

 MORE SHELL Pg. 1

Linux Essentials – Module 4
 MORE SHELL (or the Shell on Steroids)

MODULE OBJECTIVE

$ Understand various aspects of command processing in regards to

formulating command input on the command line or in a script to
achieve desired effect.

 LESSON OBJECTIVES

C Use the command & to start jobs in background.

C Explain the purpose of the redirect symbols <, >, and >> .

C Use the shell pipe symbol | to construct command pipelines.

$ Create command aliases

C Use shell variables

C Become familiar with simple shell scripts

 MORE SHELL Pg. 2

FOREGROUND and BACKGROUND PROCESSES

It’s time to see how to be a multitasking Linux user by learning how to run jobs in the
background (by using the bg command) while you are doing something else, and how
to have programs instantly go into the background (by using the & notation), so that
you can do other things. Now to be honest in much of your live work will be done on a
desktop system which supports a window-ing environment meaning you can open up
multiple terminal windows on a desktop to perform multiple operations. But bear in mind
that the desktop environment may not always be available. This is especially true when
doing remote shell operations.

So, recalling that the O/S itself is a true multi-tasker, you can run many programs at a
time even from a single shell . You are not limited to just one process. For example, if
you wanted to extract information from an extremely large file, you can run those
processes in the background while you are working on something else. Once a job is
stopped (CTRL z), you can enter fg to start it up again as the program you're working
with. (The fg command takes its name from foreground, which refers to the program
that your display and keyboard are working with.) If the process will continue without
any output to the screen and without any requirement for input, you can use bg to
move it into the background, where it runs until it is done. If the program needs to write
to the screen or read from the keyboard, the system will stop its execution and inform
you. You can then use fg to bring the program into the foreground to continue running.

The following list shows the major commands used in this form of job control:

^Z (Control-Z) typing Control-Z while the job is running will cause it to halt.
At this point, you can then (1) leave it stopped, (2) send it to
the background or (3) bring it back into the foreground.

bg (short for "BackGround") Having stopped a job with ^Z,

typing this will send it into the background.

fg (short for "ForeGround") You can use this to bring a stopped
or background job into the foreground.

jobs This will give you a numbered list of the stopped and

background jobs.

command & Ending a command with an ampersand will cause it to begin
executing in the background.

 MORE SHELL Pg. 3

Start a process in foreground, stop it, and move it to background.

This process will process files without needing any input or offering any output.

 $ find / -type d > /dev/null 2>&1 (Once started press CTRL z)
 [1] + Stopped find / -type d -print > /dev/null 2>&1
 $

 $ bg
 [1] find / -type -print > /dev/null 2>&1 &

 $

The number in the brackets is the job's control number. The last ampersand &
denotes the job is running in background.

Some systems will notify you immediately once the background job is done, but on
most systems, after a background job successfully completes, it waits until you press
the RETURN and get a new system prompt.

 $
 [1] + Done find / -type d > /dev/null 2>&1 &

 $

If the process "BOMBS" or is killed before a successful completion, you will see the
response:

 $
 [1] Terminated find / -type d > /dev/null 2>&1 &

 MORE SHELL Pg. 4

An alternative way to run a process in the background is to start it in the background
from the command and the & ampersand. This is used mostly with processes that do
not need the keyboard or display.

Starting a process in the background, using the &

 $ find / -type d > /dev/null 2>&1 &
 [1] 2309
 $
As before, the number in brackets is the job number. The 2309 is the process ID
number.

Striking the RETURN will give the following:

 $
 [1] + Done find / -type d > /dev/null 2>&1 &

Another option of working in foreground and background is, starting a process in
background and bringing it to the foreground.

Starting a process in the background and bringing it to the foreground.

 $ find / -type d > /dev/null 2>&1 &
 [1] 4310
 $ fg

 find / -type d > /dev/null 2>&1

 $

By entering the fg command it will bring the process to the foreground. Once
the process is complete, it will return the prompt, just as any process running in
the foreground.

 MORE SHELL Pg. 5

Starting a Program in the background with the Ampersand “&”

 A background process is a program that runs in the background during its
allocated time slices. It allows the screen and keyboard to be used to run a foreground
process. However, the background process should get its input and send its output from
and to some special designated points so it not does not wait for keyboard input or write
text to the screen. The OS and servers run in the background, the shell runs in the
foreground.

 A background process is started from the shell by placing the ampersand “&” at
the end of the command line. The following example demonstrates a simple “ls”
command placed in background. Once the background job is started, the job number
and process ID number are returned to standard out. You may need these numbers
later for job control. Output from the command is also returned to standard out
(somewhat defeating the purpose of placing the job in background).

$ ls &
[1] 28513
$ savewho viewlabfiles viewlabfiles2

[1] + Done ls &
$

.
The jobs command

The command jobs is used to display the status of an active job, including those in
background or suspended with ctrl - z. If a job is not specified, all active jobs are
displayed. The format of the jobs command is:

 jobs [options] [job]

 options include:

 -l list process ids in addition to normal information

 -n display only stopped or exited jobs

 -p display only the specified process group

REDIRECTION

 Every program has at least three data paths associated with it: standard input,
standard output, and standard error. Programs use these data paths to interact with
you. By default, standard input (stdin– fd0 – <) is your keyboard. The default
destination for both standard output (stdout – fd1 – > – 1>) and
standard error (stderr – fd2 – 2>) is you display screen.

 Programs use these paths as follows:

 Standard input (fd0)The place from which the program expects to read its

input. By default, processes read stdin from the keyboard.

 Standard output (fd1)The place the program writes its output. By default,

processes write stdout to the terminal screen.

 Standard error (fd2)The place the program writes its error messages. By

default, processes write stderr to the terminal screen.

 The figure below illustrates the relationship of these files to the process.

You see that by convention, most Linux commands read from "standard input" and
write to "standard output". Normally, “standard input” is the keyboard, and “standard
output” is the terminal. Another file, "standard error", is used for error messages and
other information about the operation of a command. Normally, “standard error” is
directed to the terminal.

 MORE SHELL Pg. 6

 MORE SHELL Pg. 7

One of the most powerful features of Linux is that the input can come from a file
as easily as it can come from the keyboard. And the output can be saved to a file as
easily as it can be displayed on your screen.

 Redirecting input and output is a convenient way of selecting what files or
devices a program uses. The output of a program that is normally displayed on the
screen can be sent to a printer or to a file. Redirection does not affect the functioning of
the program because the destination of output from the program is changed at the
system level. The program is unaware of the change.

 The power of "file re-direction" are the special symbols used, by the shell that
instruct the computer to read from a file, write to a file, or even append information to an
existing file. Each of these acts can be accomplished be placing a file redirection
command in a regular command line:

 0< or < redirects standard input

 1> or > redirects standard output

 1>> or >> redirects standard output and appends the information to the

chosen file.

 2> redirects standard error

2>&1 redirects standard error to the same place as standard
output

Re-directing standard input and standard output occurs frequently in Linux commands.

Writing Standard Output to a file

 The shell lets you redirect the standard output of a process from the screen (the
default) to a file. Redirecting output lets you store the text generated by a command
into a file; it’s also a convenient way to select which files or devices (such as printers) a
program uses.

 In its simplest form the command syntax is as follows (note that with redirection a

command always appears to the left and the input or output file or device to the
right):

 command > outfile

where command is the command whose output is redirected, and outfile is the name
of the file to which the process writes its standard output. If the output file exists, its
previous contents are lost. If the file does not exist, it is created.

 To append the output to an existing file, use two greater-than signs (>>) pointing
to the file to be appended on.

 The figure below illustrates where stdin, stdout, and stderr go when output is
redirected.

 The following command would normally display the contents of the /etc/passwd
file to the display, but with the output redirected to the outfile, the stdout will not be
seen on the monitor. Using the more command will display the contents of the outfile.

 $ cat /etc/passwd > outfile
 $ more outfile
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:1:2:daemon:/sbin:/sbin/nologin
 .
 .
 .
 student1:x:501:504::/home/student1:/bin/bash

 MORE SHELL Pg. 8

 MORE SHELL Pg. 9

The following command will find any filename that contains the string “test”
starting with the / directory and all directories within the slash directory. The output
(stdout) is redirected to the outfile, overwriting the previous contents of outfile. Notice
that standard error (stderr) was not redirected so, those results are still sent to the
monitor.

 $ find / -name test > outfile

 The following command will append (>>) the output of the cat /etc/passwd to the
outfile. Notice that there are no blank lines between the original and appended text.

 $ cat /etc/passwd >> outfile

Using Files for Standard Input

 The shell lets you redirect the standard input of a process so that input is read
from a file instead of from the keyboard. To redirect the input of a process, separate
the command and the input file name with a less-than sign (<) directed at the
command name. You can use input redirection with any command that accepts input
from stdin (your keyboard).

 In its simplest form, the command syntax is as follows:

 command < infile

where command is the command whose input is redirected, and infile is the name of the
file from which the process reads standard input. The file must exist from the
redirection to succeed.

 The figure below illustrates where stdin, stdout, and stderr go when input is
redirected from a file.

Re-directing standard in

$ mail student1 < /etc/passwd

This command will send mail to student1, taking the input from the contents of the
/etc/passwd file.

Re-directing standard out

 The following example, output from the cat /etc/passwd command is stored in
the file savecat. Then, the savecat file is used as input to the wc (Word count – count
lines) command:

 $ cat /etc/passwd > savecat
 $ wc -l < savecat

 MORE SHELL Pg. 10

 MORE SHELL Pg. 11

COMMAND PIPING

 The following command will pipe the output from the cat /etc/passwd command
to the input of the wc command, resulting in the line count (-l option) of the
/etc/passwd file. The output of the cat command is basically redirected to the pipe then
to the wc command so, you would not see the contents of /etc/passwd displayed on the
monitor.

 $ cat /etc/passwd | wc -l
 12
 $

 By the use of commands known as “filters” (eg. grep) , the output of one
command can be directed and used as the input to another command. Some of these
filter commands will pass the data stream unchanged and others will adjust the data
stream producing a completely different output.

Command re-direction is the process of directing either input or output to a
location other than the default location. The shell pipe character (|) allows the output of
one command to be piped to the input of another command. This allows the Linux user
to combine simple command processes into more elaborate command lines, with the
result being the same as the simple commands by themselves. Using the shell pipe
character, several commands can be strung together (pipelined) to customize
information from several sources.

 The shell lets you connect two or more processes so the standard output of one
process is used as the standard input to another process. The connection that joins the
processes is a pipe. To pipe the output of one process into another, you separate the
commands with a vertical bar (|). The general syntax for a pipe is as follows (note that
the syntax always has a command on both sides of the pipe):

 command1 | command2

where command1 is the command whose standard output is redirected or piped to
another command, and command2 is the command whose standard input reads the
previous command’s output. You can combine two or more commands into a single
pipeline. Each successive command has its output piped as input into the next
command on the command line:

 command1 | command2 | | command(n)

 MORE SHELL Pg. 12

 Command Piping

$ history | more

This pipeline will produce a listing of the user’s command history and then pass it to
the more command allowing you to view the listing one page at a time.

 $ grep student /etc/passwd | more

Using the pipe symbol (|), the output of the grep command is sent to the input of the
more command. The result of the more command is sent to the standard output. In
this case, no output redirection was declared, so the output is sent to the terminal.

$ grep "fresh" ingredients | sort > pizza

As you see this pipeline has a combination of pipes and a redirection.
The grep command (discussed later) will extract the lines from the file "ingredients"
that contain the word "fresh". The results will then be passed to the sort command
and the lines will be sorted. The results of the sort command will then be redirected
to the file called "pizza" and stored. (The lines will be sorted by the first character of
the line; number, capital, and then lower case).

There are numerous ways that you can combine the various forms of file redirection and
piping to create custom commands and to process files in various ways.

 MORE SHELL PG. 13

COMMAND GROUPING

Sometimes you want to stand in the doorway and have your foot in two rooms at the
same time in order to pass something from one room to another. Parentheses are
used to execute one or more commands under a separate shell process, which
connects to the first process via a pipe. In the following example there is a ton of things
going on. You don’t need to understand all of this but it illustrates how comples
commands can become and how important it may be to get things to process in a
specific sequence. This is where command grouping comes into play. Here there ar two
nested command groupings.

 $ (cd /usr/vue; nice -39 tar cf - . ../man | \
 > (cd ~/tardir; tar xf -) > /tmp/log 2>&1) &
 $ ps -ef > psout; sleep 5; banner five >> psout; \
 > ps -ef >> psout; sleep 10; banner ten >> psout; ps -ef >> psout

 MORE SHELL Pg. 14

ALIASES

Linux is a computer-geeks dream for a number of reasons. In the previous section we
have seen how to manipulate command lines to make complex command entries. But
going a step further what if we wanted to make our own commands. In a later section
we will talk about scripts as one way to do that. But there is another very simple way of
creating shorthands commands – command aliases.

Bash, C, Korn, and POSIX allows the System, Superuser, or the user to define
commands by new names. Aliases can be created, listed, and exported using the alias
command and can be removed with the unalias command.

To display any aliases set in your environment enter:

 $ alias

If you create an alias on the command line, it is only good for this login session. When
you log back in, it will be gone. If you want it set each time you log in, you can put it in
your personal startup file - $HOME/.bashrc, or the SA can put them in a system-wide
file.

There are two other kinds of aliases - preset and tracked. Preset are system-
dependent and users cannot change them. They are created when the software is
installed. Tracked aliases essentially are resolved pathnames for commonly used
commands and are also created by the shell.

It is a bad practice to use personal or system-wide aliases inside shell scripts. You
might not even be able to pass your programs to other users on the same machine if
they are defined outside the shell script. It also makes it very difficult to read and
understand the program since there are no man pages defining the aliases.

The first word of each command is replaced by the text of an alias, if an alias for this
word has be defined. An alias name consists of any number of characters excluding
metacharacters, quoting characters, file expansion characters, parameter and
command substitution characters, and =. The replacement string can contain any valid
shell script, including the metacharacters mentioned above. Aliases can be used to
redefine special commands, but cannot be used to redefine keywords. Aliases can be
created, listed, and exported using the alias command and can be removed with the
unalias command.

 MORE SHELL PG. 15

Aliasing is performed when scripts are read, not while they are executed. Therefore,
for it to take effect, an alias must be executed before the command referring to the alias
is read. Aliases are frequently used as shorthand for full path names.

Listing the currently defined aliases.

 # alias
 history='fc -l'
 stop='kill -STOP'
 suspend='kill -STOP $$'
 ll='ls -l'
 #

Defining a new alias.

 # alias dir='ls -la '
 # alias
 autoload='typeset -fu'
 command='command '
 dir='ls -la '
 history='fc -l'
 stop='kill -STOP'
 suspend='kill -STOP $$'
 ll=”ls –l”

 # dir
 total 416
 drwxr-xr-x 28 root root 4096 Nov 19 15:27 .
 drwxr-xr-x 28 root root 4096 Nov 19 15:27 ..
 -rw------- 1 root sys 647 Nov 17 13:30 .Xauthority
 -rw-rw-r– 1 root sys 98 Oct 5 2001 .audioCP
 drwxr-xr-x 12 root sys 1024 Nov 17 13:30 .dt
 . . .
 dr-xr-xr-x 2 root root 24 Mar 20 1998 tmp_mnt
 dr-xr-xr-x 25 bin bin 1024 Jul 18 08:10 usr
 drwxr-xr-x 19 bin bin 1024 Nov 29 2000 var
 #

 The command “dir” is now aliased to “ls -la”. Typing the command “dir”
executes the “ls -la” command. Notice that a <space> character is inserted after the
option “-la”. This is intentional, it means that the word following the alias is also
checked for alias substitution.

 MORE SHELL Pg. 16

Aliases can also be used as shorthand for full path names.

 # alias home=/usr/local/bin
 # alias
 dir='ls -la '
 history='fc -l'
 home=/usr/local/bin
 istop='kill -STOP'
 suspend='kill -STOP $$'
 ll='ls -l'
 # dir home
 total 552
 drwxr-xr-x 3 bin bin 4096 Nov 4 08:39 .
 drwxrwxrwx 12 bin bin 1024 Jul 11 10:30 ..
 -rwxr-xr-x 1 root sys 1882 Oct 9 2001 add_accounts
 -rw-rw-r– 1 root sys 2425 Nov 4 08:39 swinstall.ntc242
 -rw-rw-r– 1 root sys 2425 Nov 4 08:39 swinstall.ntc244
 -rw-r----- 1 root sys 446 Jun 21 2001 system.SAM
 #

Removing a Previously Defined Alias

Syntax: unalias (alias_name)

 #unalias dir
 #unalias home
 #alias
 history='fc -l'
 stop='kill -STOP'
 suspend='kill -STOP $$'
 ll='ls -l'
 #

 MORE SHELL PG. 17

VARIABLES

Variables are simply names attached to some bit of information that is stored in a
process's storage area in memory. Once the program stops running they disappear
unless saved to a file. Some variables may be reset by regular users.

There are two kinds of variables – GLOBAL (or environmental) and LOCAL (or
shell) .

By convention, GLOBAL variables are usually written in UPPERCASE characters, and
local variables are in lowercase. Environmental variables are shell parameters that
are global and used by your shell to create special environments for subshells and any
other commands that you might invoke. These environments will be active until you
logoff. These global (also called exported) variables can be seen and used by
subshells and other subprocesses. Global variables are inherited by a Parent process’
Children, but not by the grandparents (a process’s Parent) - they only move down the
food chain.

Shell variables (or local variable) are shell parameters that are local to your login shell
and are NOT passed to any subshells or subprocesses. Local variables are only known
to the process in which they are defined - not to its Parent or Children. Once a Child
inherits a variable, it can do whatever it wants with it; the Parent will never know.

 SIMPLE VARIABLE SYNTAX (bash [sh], POSIX, ksh)

 local_variable=value

 GLOBAL_VARIABLE=value; export VARIABLE
 OR
 export GLOBAL_VARIABLE=value

 MORE SHELL Pg. 18

COMMAND SUBSTITUTION

a. $ xdate=’date’

b. $ find . –mtime -1 > findlist.$date

Variables are commonly used in command substitution. The above example shows us
creating a list of files created in the past 24 hours and redirecting them into a file. Note
the the name given to the file uses command substitution to substitute the actual date
as part of the filename itself.

COMMON GLOBAL/ENVIRONMENTAL VARIABLES

VARIABLE

PS1
PS2

PATH
EDITOR
FCEDIT
HISTSIZE
PAGER

DEFAULT

 $
 >

varies
varies
ed
16
more

FUNCTION

primary prompt
secondary prompt when using \nl or broken
token
search path for executables
default editor in a number of commands
editor for command history editing
number of past commands saved
pause screen output in several commands

Environment variables and shell variables create part of the environment in which you
work, such as the prompt string PS1. For another example - the name of your current
shell program is saved in a variable called SHELL .

To see what your current shell is for example, enter:

 $ echo $SHELL
 /usr/bin/sh

 MORE SHELL PG. 19

Setting user environment and shell variables

Your login shell is determined by an entry in a local or networked ‘password’ file.
Depending on what shell is configured as your default, at login time the initial sh login
process is EXEC‘d by the login program, Then becomes your PARENT login process.
Before your first sh system prompt is displayed however, some scripts will be run in
your honor to set up your user environment (among other things). If using the bash shell
you might want to customize the following variables in your /.bas_profile for example.
if not already set in /etc/profile, or if you do not like the system defaults. Each user will
have personal configuration files in their personal home directory which can override
global configuration files. For example, one key variable is PATH which defines in which
directories the shell will look for requested commands. This is often referred to as the
search path. You may want to add the directories here for local applications that all
users need.

Startup and configuration scripts usually begin with a . (dot) and end with an rc . The
initial startup files below are EXEC‘d (if they exist) by the login program for Bash,
POSIX shell, and C-shell users as configured through the /etc/passwd file shell entry,
e.g., the last entry in a line in /etc/passwd may be /etc/bash, before your first system
prompt is displayed.

bash: 1st - /etc/profile ,then the files in /etc/profile.d/ if they exist

2nd - $HOME/.bash_profile
3rd - $HOME/.bashrc

 4th - /etc/bashrc

Posix-shell: 1st - /etc/profile 2nd - $HOME/.profile

C-shell: 1st - /etc/csh.login 2nd - $HOME/.cshrc

/etc/profile and /etc/bashrc are readable by ordinary users, but maintained by the SA.
They are meant for running commands (once at login), and setting variables and aliases
for everyone logging into the machine. $HOME/.bashrc (and $HOME/.profile or
$HOME/.cshrc) do not necessarily have to exist, but if they do, the one appropriate for
the shell used is EXEC’d during a login session such as ssh. Here, you can modify your
shell environment for subsequent logins, e.g., the bash shell looks for a file called
.bashrc in the user’s home directory and if found, the values can override the global
ones.

 MORE SHELL Pg. 20

[root@ntc234 skel]# cd /home/lois
[root@ntc234 lois]# ls -la
total 32
drwx------ 3 lois lois 4096 Jul 1 15:22 .
drwxr-xr-x 4 root root 4096 Jul 1 15:22 ..
-rw-r--r– 1 lois lois 24 Jul 1 15:22 .bash_logout
-rw-r--r– 1 lois lois 191 Jul 1 15:22 .bash_profile
-rw-r--r-- 1 lois lois 124 Jul 1 15:22 .bashrc
-rw-r--r– 1 lois lois 847 Jul 1 15:22 .emacs
-rw-r--r– 1 lois lois 120 Jul 1 15:22 .gtkrc
drwxr-xr-x 3 lois lois 4096 Jul 1 15:22 .kde
[root@ntc234 lois]#

Under bash /etc/bashrc is also read for all users. It is used to set system-wide functions
and aliases. This file is not only read at login, but also each time a new shell is opened.
Then $HOME/.bashrc is processed at login to customize the user’s unique environment.
This is done every time a bash shell is started. Let’s look at a typical .bashrc file:

[lois@ntc234 lois]$ pwd
/home/lois
[lois@ntc234 lois]$ more .bashrc
.bashrc

User specific aliases and functions
alias cp='cp -i'
alias rm='rm -i'
alias mv='mv -i'

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

PATH=$PATH:/usr/bin:/usr/local/bin
export PATH
[lois@ntc234 lois]$

 MORE SHELL PG. 21

In the example on the previous page user-specific aliases have been added for the rm,
cp, and mv commands. Adding the –i option protects against the accidental deletion of
files. The next section will source (or execute) the global definitions if they exist. The
last section will change the search path variable to add the /usr/sbin and /usr/local/bin
directories.

There are some utilities that provide an editing option where the default editor is vi, e.g.,
crontab. If a user prefers a text editor like gedit you could make the following entry in
their .bash_profile file to set the environmental variable called EDITOR

 export EDITOR gedit

 MORE SHELL Pg. 22

SHELL PROGRAMMING (LITE)

One of the great things about Linux (and UNIX in general) is that it’s made up of
individual commands, “building blocks” like cat and grep, that you run from a shell
prompt. Using pipes, redirection, filters, and so on, you can combine those utilities to do
an incredible number of things. Shell programming lets you take the same commands
you’d type at a shell prompt — and put them into a file that can execute by just typing its
filename. A few minutes of shell script authoring can save a ton of time reissuing
commands you use frequently. It is fairly easy to write a simple script to automate tasks
or write lengthier scripts to create complex programs, which combine other programs,
scripts, and commands to do just about anything you can think of.

NOTE: Unfortunately, the same commands on different versions of Linux/UNIX

can have different options. Also the various shells, even on the same
platform, have different scripting constructs for such thing as test
statements or flow control. Using the man page for the shell, you are
using, will describe the syntax and options available for that shell for the
system you are using.

Every UNIX operating system provides at least one shell. Typically, the operating
system invokes a shell when you log in. After the shell starts up, it displays a prompt
and waits for you to enter commands. For example, if you were a LINUX user who
wanted to know the names of the files in a directory, then you would probably type the
command ls inside a shell. The shell will interpret the ls command, which means that it
will figure out what command you typed (“oh, you want to execute an ls command”) and
then invoke the command.

 MORE SHELL PG. 23

Writing a Simple Shell Program

A shell script program can be a list of Linux/UNIX commands, saved to a file, to perform
tasks repetitively, or a single complex command, used often.

The steps necessary to create a simple shell program are:

1) Create a file with shell commands using a text editor (naming a shell
script is completely up to the creator). The first line should be the shell
interpreter (eg. #!/bin/sh)

2) Using chmod give the file execute permission.

3) Execute the script by typing the filename.sh at the command line. If
 your current directory is not in your $PATH, you can execute the
 script with the command:

 ./filename.sh
 (The “.” dot will search the current directory. You must be in the
 correct current directory.)

 THAT’S IT !

Well obviously there is more to shell scripting in terms of programming a script to do the
things it is meant to do. Detailed programming is not going to be taught in this course.
We’ll leave you with this suggestion to get a good text book on the subject and then just
try writing simple scripts and build your skills to the more complex. Simple scripts are
quickly written.

 MORE SHELL Pg. 24

What can be in a Shell Script Program?

There is no set shell script form. We will try to show a form that includes the Execution
shell, USAGE (how to execute the script), remarks, defining variable, and the body (the
set of commands to be executed).

The creator of the script can make the script as simple or as complex as is necessary.
An important point in shell scripting is the use of remarks (#) and white space (spaces,
tabs, newline) to describe the script’s purpose, execution command, and/or ease of
reading the contents of the script itself. A well-documented (user-friendly) script is more
readily accepted by others. When writing a script “Think of the other person”. It could
be someone you don’t know or, it maybe “YOU” six months down the line.

One the following page is a way (not the only way) to layout a shell script…

 #!/bin/sh #This line, is used at the very beginning of the script (first column, first
 # row), insuring the script is executed in a bash shell, regardless of
 # the login shell. The “#” beginning this line is not seen as a remark
 # and ignored by the shell.

 #Blank lines can be used within the script and ignored by the shell.

 USAGE=”usage: script_name.sh”
 #Tells how to start the script. This line can be simple, as shown, or
 # may include various options needed to invoke this script. Defining it
 # as a variable will allow you to call it if a user enters the wrong
 # command line. Using this will also allow the user to “grep” for the
 # word “USAGE” to see how to invoke this script.

 export VAR_NAME=value_of_var
 #This example will create a GLOBAL VARIABLE. Variables can be
 # defined anytime, but must be defined before being called or used.

 local_var=value_local_var
 #Local variables can also be defined at this time.

 Body of the script.
 #This area is for the commands to be accomplished by the script.
 # These can be a list of simple commands, “Test” syntax, “if”, “case”,
 # “loop” statements, and/or function calls. Functions must be defined
 # before they are called by the script.

 MORE SHELL PG. 25

An (extraordinarily) simple example:

#!/bin/sh
ls /home
grep “student” /etc/passwd
grep “student” /etc/group
grep “student” /etc/shadow

The fairly simple:

#!/bin/sh

#The script will provide a status of network connectivity, onto the network, to the
gateway and verify DNS.

USAGE=”usage: chknet.sh”

DNS=231
GW=1
echo “checking network status”
hostname
if /sbin/ifconfig eth0 | grep “RUNNING”
 then
 ping –c 3 192.168.21.$GW
 ping –c 3 192.168.21.$DNS
 host ntc$DNS
 for IP in 232 233 234 235 236 237 238 239 240 241 242 243 244
 do
 ping –c 3 192.168.21.$IP
 done
 else
 echo “Network is down”
fi

The above example shows the power of a few simple techniques such as using
variables (e.g. DNS) , test statements (e.g. if) and loops (e.g. for) . In just a couple of
lines we can check whether the network is up (line with “RUNNING”); and the gateway
and the DNS server are available (we used variables DNS and GW to make
maintenance easier should the ip-addresses ever change); and check connectivity to
every workstation on the network (loop all workstations addresses 232-244 to do a ping
on each).

 MORE SHELL Pg. 26

Executing Shell Scripts

 Shell scripts are simply command lines that the shell executes as a group. The
command lines are entered into a file using an editor, usually vi. Generally, one
command line entered per line of the file.

 Once the file is created it must be made executable using the chmod command
as follows:

Example:

 $chmod +x script_name
 $

 The chmod command changes the permission on script_name so that it is
 executable.

 Type in the name of the script and it will execute and display any output.

 $script_name
 $

If the script does not reside in directory that is part of your search path (see: echo
$PATH), then you will have to use a full path or relative addressing when starting it such
as (Assuming a script named myscript.sh is stored in the /home/student1 directory):

 $ /home/student1/myscript.sh
 -or-
 $ cd /home/student1
 $./myscript.sh

 MORE SHELL PG. 27

Script Processing

The shell will execute the shell script by reading from left to right, top to bottom, ignoring
white space and # remarks. This will continue until one of five conditions occur:

 1) A system hangs This could be caused by a number of system

hardware or software conditions. Possibly the script
calling for system resources not available on your
system.

 2) The script hangs This could be caused when a syntax or scripting error

(a bug) occurs.

 3) Completion The successful/unsuccessful completion of all the

commands within that script. The completion of the script
commands will produce a return status code (also known as
return code, exit code, or status code).

 4) User Interaction The script may call for user input from the keyboard. If

the script calls for user input, it will sit and wait, for
that input.

 5) Conditional If during the execution of the script, conditional commands
 Commands occur (test, comparison, and/or logic constructs) breaking

from the left/right/top/bottom and branching to a later part of
the script will occur.

 (To get more information on scripting it is well worth the time and
effort to get on a Linux or UNIX system and find some scripts you can view to get a
better feel for what scripting is all about; furthermore a good scripting book is worth it’s
weight in gold.)

 MORE SHELL Pg. 28

LAB

Your practical exercises for this
module:

Again log onto the NWSTC student server (204.227.127.133) and practice more
Linux commands. If you need the instructions again they can be found at the following
link:

http://webdev.nwstc.noaa.gov/d.train/linuxinstr.html

Remember:

1. You are encouraged to EXPERIMENT in this course and try various
commands, so that you SUCCEED in the field and subsequent training.

2. DO NOT enter the commands robotically without trying to understand them in

the process. Your success at further Linux training and actual work in the field is wholly
dependant upon grasping the subject matter in this course.

http://webdev.nwstc.noaa.gov/d.train/linuxinstr.html

 MORE SHELL PG. 29

 EXERCISE 1 - COMMAND RE-DIRECTION and PIPING

Using the symbol "<" uses a file as standard input, ">" redirects the standard output to
another file, and ">>" appends the output of a command to a file's contents (it will
create a new file if the file does not exist).

1. List out the contents of your home directory, but rather than having the files

display on the screen redirect them to a file.

 $ ls –la

 $ ls –la > file.out

 $ more file.out

2. Append some more info to the same file

 $ find front_porch >> file.out

 $ more file.out

3. Using input-redirection and the mail command, mail yourself a copy of the file

created above

 $ mail –s “Linux lab file” your.name@noaa.gov < file.out

4. Let’s pipe

 $ env

 $ env | more

 $ env | grep HOME

 $ ls -la

 $ ls -la | more

 $ ls –la | grep “bash”

 MORE SHELL Pg. 30

5. Altogether now

 $ ls -l | grep “bash” > bash_list

 $ cat bash_list

 $ file | grep “directory” > bash_list

 $ cat bash_list

$ ls -l | grep “bash” >> bash_list

 $ cat bash_list | more

 $ more bash_list

 $ cd $HOME ; cd fr*/li*/k*; pwd ; ls | more ; ls .. > file.out; ls ../.. >> file.out

 MORE SHELL PG. 31

EXERCISE 2 - aliases

1. At times you may want to create your own shortcuts to commands, especially
commands that have long or complicated components. Remember however not to
make an alias name the same as a command that already exists on the system. The
syntax to create an alias on the commandline is:

 alias alias_name=value

a. $ alias # list preset aliases

b. $ alias var="echo " # Use single or double quotes if there is
 # WHITE SPACE in the alias string.

c. $ var # You should get a command not found
 error

d. $ alias var

e. $ var $HOME

f. $ who

g. $ whoami

h. $ alias who=”whoami” # here we aliases a real command. It works,
 # but can becomes confusing and cause you
 # problems.

i. $ alias

j. $ who

k. $ \who # You can temporarily just for one operation,
 # enter a BACKSLASH (\) in front of the alias
 # to ignore the alias and use the real ommand.

k. $ unalias who

l. $ alias

 MORE SHELL Pg. 32

EXERCISE 3 - COMMAND RE-DIRECTION and PIPING

1. Now let’s talk variables. You may not set any in the everyday activity and enter Linux
commands, but there are many already set up for you at login time via your login
scripts. Furthermore the real power of Linux/UNIX is harnessed when you can write
shell scripts, and in doing so variables will save you a lot of work down the road.

a. $ echo $LOGNAME

b. $ echo $HOME

c. $ echo $SHELL

c. $ env

2. Set and test your own local variable

a. $ day=mon # Set a local variable in the Parent

b. $ echo $day

c. $ sh # forked another sh child process

d. $ echo $day # Why?

e. $ day=tue # set locally in the child process

f. $ echo $day

g. $ exit # return back to the parent process

h. $ echo $day # Is the Parent affected by the Child?

 MORE SHELL PG. 33

3. Let’s repeat our little experiment with a global variable

a. $ export DAY=mon # Set a global variable in Parent

b. $ echo $DAY; echo $day

c. $ sh # forked another (new) sh child process

d. $ print $DAY ; print $day # Child inherits GLOBAL variables only

h. $ export DAY=tue # set locally in the child process

i. $ echo $DAY

 j $ exit # return back to the parent process

l. $ echo $DAY ; echo $day # Was the Parent affected by the Child?

 MORE SHELL Pg. 34

EXERCISE 4 – Shell Scripts

Purpose: This exercise is designed to show how to create a simple shell script and

execute it.

1. Rather than using a text editor at this point we’ll create a script by using
 the ‘echo’ command:

a. $ echo pwd > myprog
b. $ echo whoami >> myprog
c. $ echo ‘who’ >> myprog
d. $ echo ‘echo $SHELL’ >> myprog
e. $ echo ‘echo $HOME’ >> myprog

These commands should look somewhat familiar to you. The arrows are called
redirection and we’ll go over that in a latter module. For now we are using them to write
to a new file that will by called “myprog”. Once all the above commands are entered you
have a shell script – that is a file which contains shell commads. See for yourself :

f. $ cat myprog

Now it’s good practice to identify which shell will act as the interpreter for the script. This
is done by placing the full path to the shell (eg. #!/usr/bin/sh) as the first line of the
script file. It is not a requirement however, as you’ll see. Your myprog script will run just
fine without it. Without the shell identified in the script itself, it simply defaults to using
the shell that the script is run from – meaning since you are already running a bash shell
session, your script will use the bash shell to read and interpret the shell commands in
the script and then pass them to the operating system.

As you see a shell script is just a text file whose contents happen to be shell
commands. The one requirement we have to meet in order to process our script is to let
the shell know that myprog is not just an ordinary file but rather one that can be
‘executed’ . We do this by giving it ‘execute permission’ . We’ll talk all about file
permissions in detail in another module, but for now …

g. $ chmod +x myprog

 MORE SHELL PG. 35

Okay – ready – let’s run this puppy …

h. $. /myprog
 (that’s dot space slash myprog)

Yeah. But your’re probably wondering about the dot business. Again more to come, but
it has to do with how the shell finds the actual command programs to run for you. Try
this :

i. $ pwd
j. $ echo $PATH

Again, PATH is a variable. It hold the value of locations the shell will look for commands
on the system. You may notice that it does not have the value of your current directory
(pwd = present working directory). So we have to inform the shell that your script is in
the current directory – and that is what the dot and slash do.

END EXERCISES

End

This is the end of this module. At this time you should
proceed to module 5.

